Increasing the Efficiency of a Control System for Detecting the Type and Amount of Oil Product Passing through Pipelines Based on Gamma-Ray Attenuation, Time Domain Feature Extraction, and Artificial Neural Networks.
Abdulilah Mohammad MayetSeyed Mehdi AlizadehZana Azeez KakarashAli Awadh Al-QahtaniAbdullah K AlanaziJohn William Grimaldo GuerreroHala H AlhashimiEhsan Eftekhari-ZadehPublished in: Polymers (2022)
Instantaneously determining the type and amount of oil product passing through pipelines is one of the most critical operations in the oil, polymer and petrochemical industries. In this research, a detection system is proposed in order to monitor oil pipelines. The system uses a dual-energy gamma source of americium-241 and barium-133, a test pipe, and a NaI detector. This structure is implemented in the Monte Carlo N Particle (MCNP) code. It should be noted that the results of this simulation have been validated with a laboratory structure. In the test pipe, four oil products-ethylene glycol, crude oil, gasoil, and gasoline-were simulated two by two at various volume percentages. After receiving the signal from the detector, the feature extraction operation was started in order to provide suitable inputs for training the neural network. Four time characteristics-variance, fourth order moment, skewness, and kurtosis-were extracted from the received signal and used as the inputs of four Radial Basis Function (RBF) neural networks. The implemented neural networks were able to predict the volume ratio of each product with great accuracy. High accuracy, low cost in implementing the proposed system, and lower computational cost than previous detection methods are among the advantages of this research that increases its applicability in the oil industry. It is worth mentioning that although the presented system in this study is for monitoring of petroleum fluids, it can be easily used for other types of fluids such as polymeric fluids.