Improvement of the Thermostability and Activity of Pullulanase from Anoxybacillus sp. WB42.
Bo PangLi ZhouWenjing CuiZhongmei LiuZhemin ZhouPublished in: Applied biochemistry and biotechnology (2020)
Pullulanase is a commonly used starch-debranching enzyme with broad application in food, chemical and pharmaceutical industries. Since the starch-debranching process requires a high temperature, a thermostable pullulanase is desirable. In this study, based on the strategy of surficial residue replacement and disulfide bond introduction, a mutant pullulanase (PulAC) derived from the pullulanase (PulA) of Anoxybacillus sp. WB42 with higher thermostability and activity was isolated. The surficial residue Lys419 from the wild-type PulA was replaced by arginine, and two disulfide bonds were introduced between Thr245 and Ala326 and Trp651 and Val707. The specific activity and kcat/Km value of the PulAC reached 98.20 U/mg and 12.22 mL/mg/s respectively, 1.5 times greater than that of wild-type PulA. The optimum temperature of the mutant PulAC was 65 °C. The PulAC retained more than 85% activity after incubation at 65 °C for 30 min, which is much higher than the activity maintained by wild-type PulA. Due to its high optimum temperature, thermostability, and specific activity, the mutant PulAC reported here could play an important role in improving hydrolytic efficiency in the starch-debranching process.