Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors.
Xudong WangSiyu SuYuqing ZhuXiaolong ChengChen ChengLeilei ChenAnhua LeiLi ZhangYuyan XuDan YeYi ZhangWei LiJin ZhangPublished in: Nature communications (2023)
The pro-inflammatory state of macrophages, underpinned by their metabolic condition, is essentially affecting their capacity of combating tumor cells. Here we find, via a pooled metabolic gene knockout CRISPR screen that KEAP1 and ACOD1 are strong regulators of the pro-inflammatory state in macrophages. We show that ACOD1 knockout macrophages, generated in our induced pluripotent stem cell-derived CAR-macrophage (CAR-iMAC) platform, are strongly and persistently polarized toward the pro-inflammatory state, which manifests in increased reactive oxygen species (ROS) production, more potent phagocytosis and enhanced cytotoxic functions against cancer cells in vitro. In ovarian or pancreatic cancer mouse models, ACOD1-depleted CAR-iMACs exhibit enhanced capacity in repressing tumors, leading to increased survival. In addition, combining ACOD1-depleted CAR-iMACs with immune checkpoint inhibitors (ICI), such as anti-CD47 or anti-PD1 antibodies, result in even stronger tumor suppressing effect. Mechanistically, the depletion of ACOD1 reduces levels of the immuno-metabolite itaconate, allowing KEAP1 to prevent NRF2 from entering the nucleus to activate an anti-inflammatory program. This study thus lays down the proof of principle for targeting ACOD1 in myeloid cells for cancer immunotherapy and introduces metabolically engineered human iPSC-derived CAR-iMACs cells with enhanced polarization and anti-tumor functions in adoptive cell transfer therapies.
Keyphrases
- endothelial cells
- induced apoptosis
- reactive oxygen species
- high glucose
- anti inflammatory
- cell cycle arrest
- induced pluripotent stem cells
- genome wide
- diabetic rats
- signaling pathway
- high throughput
- cell death
- adipose tissue
- dna damage
- mouse model
- acute myeloid leukemia
- quality improvement
- crispr cas
- randomized controlled trial
- copy number
- clinical trial
- pi k akt
- gene expression
- protein protein
- open label
- free survival
- stress induced