Counterions under a Surface-Adsorbed Cationic Surfactant Monolayer: Structure and Thermodynamics.
Eli SloutskinLilach TamamZvi SapirBenjamin M OckoColin D BainIvan KuzmenkoThomas GogMoshe DeutschPublished in: Langmuir : the ACS journal of surfaces and colloids (2022)
The surface adsorption of ionic surfactants is fundamental for many widespread phenomena in life sciences and for a wide range of technological applications. However, direct atomic-resolution structural experimental studies of noncrystalline surface-adsorbed films are scarce. Thus, even the most central physical aspects of these films, such as their charge density, remain uncertain. Consequently, theoretical models based on contradicting assumptions as for the surface films' ionization are widely used for the description and prediction of surface thermodynamics. We employ X-ray reflectivity to obtain the Ångström-scale surface-normal structure of surface-adsorbed films of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in aqueous solutions at several different temperatures and concentrations. In conjunction with published neutron reflectivity data, we determine the surface-normal charge distribution due to the dissociated surfactants' headgroups. The distribution appears to be inconsistent with the Gouy-Chapman model yet consistent with a compact Stern layer model of condensed counterions. The experimental surfactant adsorption thermodynamics conforms well to classical, Langmuir and Kralchevsky, adsorption models. Furthermore, the Kralchevsky model correctly reproduces the observed condensation of counterions, allowing the values of the adsorption parameters to be resolved, based on the combination of the present data and the published surface tension measurements.