Login / Signup

Mussel Adhesive Mimetic Silk Sericin Prepared by Enzymatic Oxidation for the Construction of Antibacterial Coatings.

Wei Peng QiangXiao Dong HeKai ZhangYan Fang ChengZhi Song LuChang Ming LiEn-Tang KangQing-You XiaLi Qun Xu
Published in: ACS biomaterials science & engineering (2021)
With the rapid development and advancement in orthodontic and orthopedic technologies, the demand for biomedical-grade titanium (Ti) alloys is growing. The Ti-based implants are susceptible to bacterial infections, leading to poor healing and osteointegration, resulting in implant failure or repeated surgical intervention. Silk sericin (SS) is hydrophilic, biocompatible, and biodegradable and could induce a low immunological response in vivo. As a result, it would be intriguing to investigate the use of hydrophilic SS in surface modification. In this work, the tyrosine moiety in SS was oxidized by tyrosinase (or polyphenol oxidase) to the 3,4-dihydroxyphenylalanine (DOPA) form, generating the catechol moiety-containing SS (SSC). Inspired by the adhesion of mussel foot proteins, the SSC coatings could be directly deposited onto multiple surfaces in SS and tyrosinase mixed stock solutions to create active surfaces with catechol groups. Further, the SSC-coated Ti surfaces were hybridized with silver nanoparticles (Ag NPs) via in situ silver ion (Ag+) reduction. The antibacterial properties of the Ag NPs/SS-coated Ti surfaces are demonstrated, and they can prevent bacterial cell adhesion as well as early-stage biofilm formation. In addition, the developed Ag NPs/SSC-coated Ti surfaces exhibited a negligible level of cytotoxicity in L929 mouse fibroblast cells.
Keyphrases