Probiotic Potential and Effects on Gut Microbiota Composition and Immunity of Indigenous Gut Lactobacilli in Apis cerana.
Mingkui LvSifan WangHuajuan YinKun DongYiqiu LiuHongbin PanQiuye LinZhen-Hui CaoPublished in: Probiotics and antimicrobial proteins (2022)
This study aimed to investigate the probiotic potential of gut indigenous lactic acid bacteria (LAB) originated from Apis cerana. Six Limosilactobacillus reuteri and one Lactobacillus helveticus were isolated from gut samples of A. cerana adult worker bee. All isolates antagonized the growth of pathogens including Salmonella typhimurium, Escherichia coli, Shigella flexneri, and Flavobacterium frigidimaris, and L. helveticus KM7 showed the greatest antimicrobial activity among them. All strains were sensitive to cefotaxime, amoxicillin, cephalothin, penicillin G, kanamycin, and vancomycin, moderately sensitive to novobiocin and resistant to gentamicin. Six out of seven strains were sensitive to ampicillin. L. helveticus KM7 was chosen to evaluate in vivo probiotic effect of adult worker bees of A. cerana through fed sucrose syrup supplemented with KM7. Administration of KM7 increased survival rate and gut LAB but decreased gut fungi and Enterococcus in honeybees. Expressions of genes related to antimicrobial peptides (AMPs) including Abaecin and Defensin were also induced in the gut of honeybees. The results suggested that L. helveticus KM7 with greater probiotic properties could improve the survival rate of adult worker honeybees of A. cerana through regulating gut microbiota and AMPs genes expression.