Activation of Hypoxia Inducible Factor-1 Alpha-Mediated DNA Methylation Enzymes (DNMT3a and TET2) Under Hypoxic Conditions Regulates S100A6 Transcription to Promote Lung Cancer Cell Growth and Metastasis.
Tengfei WangGenbao ZhuBo WangMengxue HuChen GongKemeng TanLa JiangXiaohong ZhuYuliu GengLili LiPublished in: Antioxidants & redox signaling (2024)
Aims: This research was aimed at investigating the effects of hypoxia inducible factor-1 alpha (HIF-1α)-mediated DNA methylation enzymes (ten-eleven translocase-2 [TET2] and DNA methyltransferase-3a [DNMT3a]) under hypoxic conditions on S100A6 transcription, thereby promoting the growth and metastasis of lung cancer cells. Methods: The expression of HIF-1α or S100A6 in lung cancer cells was interfered with under normoxic and hypoxic conditions, and the cell proliferative, migratory, and invasive properties were assessed. The mechanism of HIF-1α-regulated TET2 and DNMT3 effects on S100A6 transcription under hypoxic conditions was further investigated. Results: Functionally, S100A6 over-expression promoted lung cancer cell proliferation and metastasis. S100A6 over-expression reversed the inhibitory effects of HIF-1α interference on the proliferation and metastasis of lung cancer cells. S100A6 was induced to express in an HIF-1α-dependent manner under hypoxic conditions, and silencing S100A6 or HIF-1α suppressed lung cancer cell proliferation and metastasis under hypoxic conditions. Further, The Cancer Genome Atlas-lung adenocarcinoma database analysis revealed that S100A6 mRNA levels had a negative correlation with methylation levels. Mechanistically, CpG hypomethylation status in the S100A6 promoter hypoxia response element had an association with HIF-1α induction. TET2 was enriched in S100A6 promoter region of lung cancer cells under hypoxic conditions, whereas DNMT3a enrichment was reduced in S100A6 promoter region. HIF-1α-mediated S100A6 activation was linked to DNMT3a-associated epigenetic inactivation and TET2 activation. Innovation: The activation of HIF-1α-mediated DNA methylation enzymes under hypoxic conditions regulated S100A6 transcription, thereby promoting lung cancer cell growth and metastasis. Conclusion: In lung cancer progression, hypoxia-induced factor HIF-1α combined with DNA methylation modifications co-regulates S100A6 transcriptional activation and promotes lung cancer cell growth and metastasis.
Keyphrases
- dna methylation
- genome wide
- gene expression
- endothelial cells
- transcription factor
- cell proliferation
- poor prognosis
- copy number
- single cell
- high glucose
- binding protein
- squamous cell carcinoma
- single molecule
- young adults
- long non coding rna
- mass spectrometry
- oxidative stress
- signaling pathway
- diabetic rats
- cell free