Quantitative assessment of myelination patterns in preterm neonates using T2-weighted MRI.
Siying WangChristian LedigJoseph V HajnalSerena J CounsellJulia A SchnabelIakovos TheodoulouPublished in: Scientific reports (2019)
Myelination is considered to be an important developmental process during human brain maturation and closely correlated with gestational age. Quantitative assessment of the myelination status requires dedicated imaging, but the conventional T2-weighted scans routinely acquired during clinical imaging of neonates carry signatures that are thought to be associated with myelination. In this work, we develop a quatitative marker of progressing myelination for assessment preterm neonatal brain maturation based on novel automatic segmentation method for myelin-like signals on T2-weighted magnetic resonance images. Firstly we define a segmentation protocol for myelin-like signals. We then develop an expectation-maximization framework to obtain the automatic segmentations of myelin-like signals with explicit class for partial volume voxels whose locations are configured in relation to the composing pure tissues via second-order Markov random fields. The proposed segmentation achieves high Dice overlaps of 0.83 with manual annotations. The automatic segmentations are then used to track volumes of myelinated tissues in the regions of the central brain structures and brainstem. Finally, we construct a spatio-temporal growth models for myelin-like signals, which allows us to predict gestational age at scan in preterm infants with root mean squared error 1.41 weeks.
Keyphrases
- gestational age
- deep learning
- contrast enhanced
- magnetic resonance
- white matter
- preterm birth
- low birth weight
- birth weight
- convolutional neural network
- preterm infants
- high resolution
- computed tomography
- magnetic resonance imaging
- machine learning
- gene expression
- multiple sclerosis
- network analysis
- randomized controlled trial
- resting state
- dna methylation
- genome wide
- fluorescence imaging
- physical activity
- cerebral ischemia
- functional connectivity
- subarachnoid hemorrhage