Computational study of DMPC liposomes loaded with the N-(2-Hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) and determination of its antiproliferative activity in vitro in NIH-3T3 cells.
Xelhua MarcosYudibeth Sixto-LópezSilvia Pérez-CasasCorrea-Basurto JoséPublished in: Journal of biomolecular structure & dynamics (2021)
N-(2-Hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) is a valproic acid (VPA) derivative that has shown promising antiproliferative effects in different cancer cell lines, such as A204, HeLa, and MDA-MB-231. However, its low water solubility could reduce its therapeutic effectiveness. To solve this problem, in this work, we incorporated HO-AAVPA into dimyristoyl-phosphatidylcholine (DMPC) liposomes in the presence or absence of cholesterol (CHOL). Using differential scanning calorimetry (DSC), we found that the transition enthalpy (ΔHtr) of DMPC liposomes is reduced in the presence of CHOL and/or HO-AAVPA, indicating the favorable interactions between CHOL and/or HO-AAVPA and DMPC. Further, by molecular dynamics simulations it was possible to observed that HO-AAVPA migrates from the center of the bilayer toward the water and lipid interface of the DPMC bilayer systems exposing the amine group to water and the aliphatic chain toward the interior of the bilayer. As a consequence, we observed an ordering of the lipid bilayer. Moreover, CHOL harbors into the inner bilayer membrane, increasing the order parameter of the system. The liposomal solutions loaded with HO-AAVPA were tested in the NIH3T3 cell line, showing a reduction in cell proliferation compared to those cells presented without liposomes.Communicated by Ramaswamy H. Sarma.
Keyphrases
- drug delivery
- pi k akt
- molecular dynamics simulations
- cell cycle arrest
- cell proliferation
- drug release
- cancer therapy
- systematic review
- induced apoptosis
- randomized controlled trial
- signaling pathway
- cell death
- molecular docking
- high resolution
- young adults
- mass spectrometry
- breast cancer cells
- tandem mass spectrometry