Login / Signup

The effect of biosynthesized selenium nanoparticles on the expression of CYP51A and HSP90 antifungal resistance genes in Aspergillus fumigatus and Aspergillus flavus.

Mahdi Hosseini BafghiRazieh NazariMajid DarroudiMohsen ZargarHossein Zarrinfar
Published in: Biotechnology progress (2021)
The application of biological nanoparticles (NPs) can be considered as a way to overcome the problem of antifungal resistance in pathogenic fungi. This study takes a new approach to biosynthesized NPs influence on the expression of CYP51A and HSP90 antifungal resistance genes in Aspergillus fumigatus and A. flavus, and comparison with antifungal agents. Selenium NPs (Se-NPs) were biosynthesized using Aspergillus strains and their production was proved by several methods including, UV-Vis, XRD, FTIR, FESEM, and EDX techniques. The minimum inhibitory concentrations (MICs) of Aspergillus strains were determined using the CLSI M38-A2 broth microdilution method. The differences in expression levels of CYP51A and HSP90 genes were examined between untreated and treated of A. fumigatus and A. flavus using itraconazole and amphotericin B and biosynthesized Se-NPs through real-time PCR. After confirming the results of NPs synthesis, the MIC of itraconazole and amphotericin B against A. fumigatus and A. flavus was 4 μg/ml. Based on the real-time PCR results, the obtained ∆∆CTs for these strains were -0.18, -1.46, and -1.14. Whereas the MIC values for treated samples with Se-NPs have decreased to 0.5 μg/ml, and the ∆∆CTs for these were -0.25, -1.76, and -1.68. The expression of CYP51A and HSP90 genes was significantly down-regulated through the use of Se-NPs against A. fumigatus and A. flavus.
Keyphrases