In this study, the characterization of fish oil (FO) emulsion gel (EGEL) containing single cell protein (SCP) produced from Lentinula edodes (L. edodes) and its potential inhibition against Acinetobacter baumannii (A. baumannii) were investigated. Oil extracted from the fish liver was emulsified with tween 80 and water, and then gelled using gelatin with the assistance of an ultrasonic homogenizer. The characteristics and surface analysis of SCP-EGEL were examined using FTIR (Fourier-transform infrared spectroscopy) and SEM (Scanning electron microscope). The particle size distribution and zeta potential of SCP-EGEL were measured using a Malvern Zetasizer. When SCP-EGEL was applied to the surface of the medium inoculated with A. baumannii, the inhibition zone (IZ) was 8.2 mm. An expansion of the IZ was observed (10.2 mm) when SCP-EGEL was applied to a fish skin (FS) surface prepared in the shape of a 6-mm diameter disc. In the SEM images, when SCP was added to lipo gel, the gel structure appeared flattened or swollen in some areas. The appearance of SCP cells being covered with gel gave the impression that they have a secondary wall. Therefore, the resulting complex can potentially be used as an additive in animal and human nutrition, in functional food coatings to suppress A. baumannii, and in fish feed to enrich it with protein.
Keyphrases
- acinetobacter baumannii
- multidrug resistant
- drug resistant
- single cell
- wound healing
- pseudomonas aeruginosa
- hyaluronic acid
- protein protein
- fatty acid
- amino acid
- endothelial cells
- induced apoptosis
- physical activity
- binding protein
- high throughput
- deep learning
- risk assessment
- human health
- climate change
- small molecule
- optical coherence tomography
- soft tissue
- convolutional neural network
- electron microscopy
- high speed