Login / Signup

Triple Function Lubricant Additives Based on Organic-Inorganic Hybrid Star Polymers: Friction Reduction, Wear Protection, and Viscosity Modification.

Bas G P van RavensteijnRaghida Bou ZerdanDongjin SeoNicholas CadirovTakumi WatanabeJeffrey A GerbecCraig J HawkerJacob N IsraelachviliMatthew E Helgeson
Published in: ACS applied materials & interfaces (2018)
Polymer-based lubricant additives for friction reduction, wear protection, or viscosity improvement have been widely studied. However, single additives achieving all three functions are rare. To address this need, we have explored the combination of polymer topology with organic-inorganic hybrid chemistry to simultaneously vary the temperature- and shear-dependent properties of polymer additives in solution and at solid surfaces. A topological library of lubricant additives, based on statistical copolymers of stearyl methacrylate and methyl methacrylate, ranging from linear to branched star architectures, was prepared using ruthenium-catalyzed controlled radical polymerization. Control over the polymerization yielded additives with low dispersity and comparable molecular weights, allowing evaluation of the influence of polymer architecture on friction reduction, wear protection, and bulk viscosity improvement in a commercial base oil (Yubase 4). Structure-performance relationships for these functions were assessed by a combination of a high-speed surface force apparatus (HS-SFA) experiments, wear track profilometry, quartz crystal microbalance analysis, and solution viscometry. The custom-built HS-SFA provides a unique experimental environment to measure the boundary lubrication performance under extreme shear rates (≈107 s-1) for prolonged times (24 h), mimicking the extreme conditions of automotive applications. These experiments revealed that the performance of the additives as boundary lubricants and wear protectants scales with the degree of branching. The branched architectures prohibit ordering of the additives in thin films under high-load conditions, leading to a thicker absorbed polymer brush boundary layer and therefore enhanced film fluidity and lubricity. Additionally, star polymers with increasing arm number lead to bulk viscosity modification, reflected by a significant increase in the viscosity index compared to the commercial base oil. Although outperformed by linear polymers for bulk viscosity improvement, the (hybrid) star polymers successfully combine the three distinct lubricant additive functions: friction reduction, wear protection, and bulk viscosity improvement-in a single polymeric structure. It should also be noted that, judging from HS-SFA experiments, hybrid stars carrying a silicate-based core outperform their fully organic analogues as boundary lubricants. The enhanced performance is most likely driven by attractive forces between the silicate cores and the employed metallic surfaces. Combining three function in one minimizes formulation complexity and thus opens a route to fundamentally understand and formulate key design parameters for the development of novel multifunction lubricant additives.
Keyphrases
  • ionic liquid
  • high speed
  • drug delivery
  • climate change
  • fatty acid
  • escherichia coli
  • staphylococcus aureus
  • gold nanoparticles
  • molecular dynamics simulations
  • solid state
  • data analysis