Login / Signup

Multi-batch single-cell comparative atlas construction by deep learning disentanglement.

Allen W LynchMyles A BrownClifford A Meyer
Published in: Nature communications (2023)
Cell state atlases constructed through single-cell RNA-seq and ATAC-seq analysis are powerful tools for analyzing the effects of genetic and drug treatment-induced perturbations on complex cell systems. Comparative analysis of such atlases can yield new insights into cell state and trajectory alterations. Perturbation experiments often require that single-cell assays be carried out in multiple batches, which can introduce technical distortions that confound the comparison of biological quantities between different batches. Here we propose CODAL, a variational autoencoder-based statistical model which uses a mutual information regularization technique to explicitly disentangle factors related to technical and biological effects. We demonstrate CODAL's capacity for batch-confounded cell type discovery when applied to simulated datasets and embryonic development atlases with gene knockouts. CODAL improves the representation of RNA-seq and ATAC-seq modalities, yields interpretable modules of biological variation, and enables the generalization of other count-based generative models to multi-batched data.
Keyphrases