Login / Signup

Prediction of lattice energy of benzene crystals: A robust theoretical approach.

Anh L P NguyenThomas G MasonBenny D FreemanEkaterina I Izgorodina
Published in: Journal of computational chemistry (2020)
We present an inexpensive and robust theoretical approach based on the fragment molecular orbital methodology and the spin-ratio scaled second-order Møller-Plesset perturbation theory to predict the lattice energy of benzene crystals within 2 kJ⋅mol-1 . Inspired by the Harrison method to estimate the Madelung constant, the proposed approach calculates the lattice energy as a sum of two- and three-body interaction energies between a reference molecule and the surrounding molecules arranged in a sphere. The lattice energy converges rapidly at a radius of 13 Å. Adding the corrections to account for a higher correlated level of theory and basis set superposition for the Hartree Fock (HF) level produced a lattice energy of -57.5 kJ⋅mol-1 for the benzene crystal structure at 138 K. This estimate is within 1.6 kJ⋅mol-1 off the best theoretical prediction of -55.9 kJ⋅mol-1 . We applied this approach to calculate lattice energies of the crystal structures of phase I and phase II-polymorphs of benzene-observed at a higher temperature of 295 K. The stability of these polymorphs was correctly predicted, with phase II being energetically preferred by 3.7 kJ⋅mol-1 over phase I. The proposed approach gives a tremendous potential to predict stability of other molecular crystal polymorphs.
Keyphrases
  • phase ii
  • clinical trial
  • open label
  • crystal structure
  • room temperature
  • density functional theory
  • randomized controlled trial
  • phase iii
  • study protocol
  • atrial fibrillation