Correlations between ligand field Δ o, spin crossover T 1/2 and redox potential E pa in a family of five dinuclear helicates.
Sandhya SinghSally BrookerPublished in: Chemical science (2021)
A family of five new bis-bidentate azole-triazole Rat ligands (1,3-bis(5-(azole)-4-isobutyl-4H-1,2,4-triazol-3-yl)benzene), varying in choice of azole (2-imidazole, 4-imidazole, 1-methyl-4-imidazole, 4-oxazole and 4-thiazole), and the corresponding family of spin-crossover (SCO) and redox active triply bridged dinuclear helicates, [FeII 2L3]4+, has been prepared and characterised. X-ray crystal structures show all five Fe(ii) helicates are low spin at 100 K. Importantly, DOSY NMR confirms the intactness of these SCO-active dinuclear helicates in D3-MeCN solution, regardless of HS fraction: γ HS(298 K) = 0-0.81. Variable temperature 1H NMR Evans and UV-vis studies reveal that the helicates are SCO-active in MeCN solution. Indeed, the choice of azole in the Rat ligand used in [Fe2L3]4+ tunes: (a) solution SCO T 1/2 from 247 to 471 K, and (b) reversible redox potential, E m(FeII/III), from 0.25 to 0.67 V for four helicates, whilst one has an irreversible redox process, E pa = 0.78 V, vs. 0.01 M AgNO3/Ag. For the four reversible redox systems, a strong correlation (R 2 = 0.99) is observed between T 1/2 and E pa. Finally, the analogous Ni(ii) helicates have been prepared to obtain Δ o, establishing: (a) the ligand field strength order of the ligands: 4-imidazole (11 420) ∼ 1-methyl-4-imidazole (11 430) < 2-imidazole (11 505) ∼ 4-oxazole (11 516) < 4-thiazole (11 804 cm-1), (b) that Δ o ([NiII 2L3]4+) strongly correlates (R 2 = 0.87) with T 1/2 ([FeII 2L3]4+), and (c) interestingly that Δ o strongly correlates (R 2 = 0.98) with E pa for the four helicates with reversible redox, so the stronger the ligand field strength, the harder it is to oxidise the Fe(ii) to Fe(iii).
Keyphrases
- candida albicans
- high resolution
- room temperature
- magnetic resonance
- solid state
- metal organic framework
- electron transfer
- density functional theory
- single molecule
- ionic liquid
- gene expression
- open label
- clinical trial
- human health
- randomized controlled trial
- genome wide
- single cell
- transition metal
- climate change
- risk assessment