Au@Ag Core-Shell Nanoparticles for Colorimetric and Surface-Enhanced Raman-Scattering-Based Multiplex Competitive Lateral Flow Immunoassay for the Simultaneous Detection of Histamine and Parvalbumin in Fish.
Carlos Fernández-LodeiroLara González-CabaleiroLorena Vázquez-IglesiasEsther Serrano-PertierraGustavo BodelónMónica CarreraMaria Del Carmen Blanco-LopezJorge Pérez-JusteIsabel Pastoriza SantosPublished in: ACS applied nano materials (2023)
Foodborne allergies and illnesses represent a major global health concern. In particular, fish can trigger life-threatening food allergic reactions and poisoning effects, mainly caused by the ingestion of parvalbumin toxin. Additionally, preformed histamine in less-than-fresh fish serves as a toxicological alert. Consequently, the analytical assessment of parvalbumin and histamine levels in fish becomes a critical public health safety measure. The multiplex detection of both analytes has emerged as an important issue. The analytical detection of parvalbumin and histamine requires different assays; while the determination of parvalbumin is commonly carried out by enzyme-linked immunosorbent assay, histamine is analyzed by high-performance liquid chromatography. In this study, we present an approach for multiplexing detection and quantification of trace amounts of parvalbumin and histamine in canned fish. This is achieved through a colorimetric and surface-enhanced Raman-scattering-based competitive lateral flow assay (SERS-LFIA) employing plasmonic nanoparticles. Two distinct SERS nanotags tailored for histamine or β-parvalbumin detection were synthesized. Initially, spherical 50 nm Au@Ag core-shell nanoparticles (Au@Ag NPs) were encoded with either rhodamine B isothiocyanate (RBITC) or malachite green isothiocyanate (MGITC). Subsequently, these nanoparticles were bioconjugated with anti-β-parvalbumin and antihistamine, forming the basis for our detection and quantification methodology. Additionally, our approach demonstrates the use of SERS-LFIA for the sensitive and multiplexed detection of parvalbumin and histamine on a single test line, paving the way for on-site detection employing portable Raman instruments.
Keyphrases
- label free
- sensitive detection
- real time pcr
- loop mediated isothermal amplification
- public health
- gold nanoparticles
- high throughput
- global health
- high performance liquid chromatography
- quantum dots
- mass spectrometry
- highly efficient
- fluorescent probe
- smoking cessation
- solid phase extraction
- reduced graphene oxide
- risk assessment
- photodynamic therapy
- ms ms
- molecularly imprinted