Login / Signup

Target-allele-specific probe single-base extension (TASP-SBE): a novel MALDI-TOF-MS strategy for multi-variants analysis and its application in simultaneous detection of α-/β-thalassemia mutations.

Qiong ChenXuexi YangWeilun HuangZiyan LiMingli XuYang LiFangchao TaoZhengyi HuangXu YangXuefeng ZhaoLinxiao JiangWanjun Zhou
Published in: Human genetics (2023)
Single-nucleotide variants (SNVs) and copy number variations (CNVs) are the most common genomic variations that cause phenotypic diversity and genetic disorders. MALDI-TOF-MS is a rapid and cost-effective technique for multi-variant genotyping, but it is challenging to efficiently detect CNVs and clustered SNVs, especially to simultaneously detect CNVs and SNVs in one reaction. Herein, a novel strategy termed Target-Allele-Specific Probe Single-Base Extension (TASP-SBE) was devised to efficiently detect CNVs and clustered SNVs with MALDI-TOF-MS. By comprehensive use of traditional SBE and TASP-SBE strategies, a MALDI-TOF-MS assay was also developed to simultaneously detect 28 α-/β-thalassemia mutations in a single reaction system, including 4 α-thalassemia deletions, 3 HBA and 21 HBB SNVs. The results showed that all 28 mutations were sensitively identified, and the CNVs of HBA/HBB genes were also accurately analyzed based on the ratio of peak height (RPH) between the target allele and reference gene. The double-blind evaluation results of 989 thalassemia carrier samples showed a 100% concordance of this assay with other methods. In conclusion, a one-tube MALDI-TOF-MS assay was developed to simultaneously genotype 28 thalassemia mutations. This novel TASP-SBE was also verified a practicable strategy for the detection of CNVs and clustered SNVs, providing a feasible approach for multi-variants analysis with MALDI-TOF-MS technique.
Keyphrases