Login / Signup

Mining Medicinally Relevant Bioreduction Substrates Inspired by Ligand-Based Drug Design.

Alexander J RagoIoanna ZoiJackson A GartmanKelly A McDanielNavendu JanaDachun LiuWen-Ju Bai
Published in: Journal of medicinal chemistry (2024)
Exploring the scope of biocatalytic transformations in the absence of enzyme structures without extensive experimentation is a challenging task. To expand the limited substrate capacity of carrot-mediated bioreduction and hunt for new medicinally relevant ketones with minimum cost of labor and time, we deployed a practical method inspired by ligand-based drug design. Through analyzing collected literature data and building pharmacophore and reactivity prediction models, we screened a self-built virtual library of >8000 ketones bearing the most frequently used N,O,S -heterocycles and functional groups in drug discovery. Representative examples were validated, expanding the bioreduction substrate scope. The public availability of our models alongside the straightforward screening workflow makes it time-, labor-, and cost-saving to evaluate unknown bioreduction substrates for medicinal chemistry applications, especially for a large set of structurally differentiated ketones. Our studies also showcase the novelty of utilizing medicinal chemistry principles to solve a general biocatalysis problem.
Keyphrases
  • drug discovery
  • electronic health record
  • adverse drug
  • healthcare
  • molecular docking
  • drug induced
  • mental health
  • cross sectional
  • amino acid
  • emergency department
  • machine learning
  • virtual reality