Login / Signup

Expanding the CRISPR Toolbox in Culicine Mosquitoes: In Vitro Validation of Pol III Promoters.

Michelle A E AndersonJessica PurcellSebald A N VerkuijlVictoria C NormanPhilip Thomas LeftwichTim Harvey-SamuelLuke S Alphey
Published in: ACS synthetic biology (2020)
CRISPR-Cas9-based "gene drive" technologies have been proposed as a novel and effective means of controlling human diseases vectored by mosquitoes. However, more complex designs than those demonstrated to date-and an expanded molecular toolbox with which to build them-will be required to overcome the issues of resistance formation/evolution and drive spatial/temporal limitation. Foreseeing this need, we assessed the sgRNA transcriptional activities of 33 phylogenetically diverse insect Polymerase III promoters using three disease-relevant Culicine mosquito cell lines (Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus). We show that U6 promoters work across species with a range of transcriptional activity levels and find 7SK promoters to be especially promising because of their broad phylogenetic activity. We further show that U6 promoters can be substantially truncated without affecting transcriptional levels. These results will be of great utility to researchers involved in developing the next generation of gene drives.
Keyphrases
  • aedes aegypti
  • zika virus
  • crispr cas
  • dengue virus
  • genome wide
  • genome editing
  • gene expression
  • transcription factor
  • endothelial cells
  • copy number
  • heat shock