Login / Signup

Propolis attenuates lipopolysaccharide-induced inflammatory responses through intracellular ROS and NO levels along with downregulation of IL-1β and IL-6 expressions in murine RAW 264.7 macrophages.

Fariba AsgharpourAli Akbar MoghadamniaMina MotallebnejadHamid Reza Nouri
Published in: Journal of food biochemistry (2019)
Propolis had a wide spectrum of biological activities. In the current study, antioxidative and the immunomodulatory effects of the Polur ethanol extract of propolis (PEEP) in murine macrophage (RAW 264.7) cells were investigated. Bioactive composition of the PEEP was determined by HPLC analysis. Cells were treated with different concentrations of PEEP and LPS, then cell viability, NO levels, and expression of inflammatory factors were evaluated. HPLC analysis of PEEP indicated the presence of flavonoids and phenolic acid. The PEEP inhibited the proliferation of RAW 264.7 cells with IC50 15 ± 3.2 µg/ml. Reactive oxygen species (ROS) and NO production was significantly reduced by 0.15 µg/ml of PEEP. Additionally, expression of Cox-2, IL-1β and IL-6 significantly decreased. The obtained results supported the PEEP anti-inflammatory effects on RAW 264.7 cells may be applied via reducing ROS and NO production along with COX-2, IL-1β, and IL-6 expression. PRACTICAL APPLICATIONS: Propolis is a resinous substance produced by the honeybee that has been adopted as a form of traditional medicine since ancient times. The main compounds found in propolis are typically various and depend on the type of plants and climatic region. In this respect, a wide spectrum of biological activities for propolis has been identified including antioxidant, antimicrobial, anticarcinogenic, anti-inflammatory, as well as antifungal properties. This extraordinary substance is rich in flavonoids and antioxidants. Therefore, it is now widely used in foods and drinks with the claim that it can maintain or improve human health.
Keyphrases