Measuring Presynaptic Calcium Influx at the Drosophila Larval Neuromuscular Junction.
Tingting WangC Andrew FrankPublished in: Cold Spring Harbor protocols (2024)
Synaptic transmission plays a critical role in information processing and storage within the nervous system. The triggering of action potentials activates voltage-gated calcium channels at presynaptic active zones, facilitating the calcium-dependent release of synaptic vesicles. Homeostatic mechanisms are crucial in stabilizing synaptic function. At the Drosophila neuromuscular junction, a compensatory increase in presynaptic neurotransmitter release occurs when postsynaptic glutamate receptor function is pharmacologically or genetically impaired, thereby stabilizing synaptic output. This adaptation is known as presynaptic homeostatic potentiation (PHP). Recent advancements, including confocal and super-resolution imaging techniques, have demonstrated an increase in presynaptic calcium influx during both the rapid induction and long-term maintenance of PHP. These observations indicate that the abundance and structural organization of presynaptic calcium channels, along with various active zone components, undergo modifications following the suppression of postsynaptic glutamate receptors. Such findings underscore the critical roles of trafficking and stabilization of presynaptic calcium channels and active zone proteins in homeostatic plasticity. This protocol describes using calcium indicators and confocal imaging methods to measure single-action potential-evoked presynaptic calcium influx during PHP.