Deregulated MicroRNA Signature Following Glioblastoma Irradiation.
Eman A ToraihAya El-WazirHoda Y AbdallahMohamed A TantawyManal S FawzyPublished in: Cancer control : journal of the Moffitt Cancer Center (2019)
Glioblastoma (GBM), the most common and aggressive brain tumor in adults, shows resistance to treatment, particularly radiotherapy. One method for effective treatment is using a group of radiosensitizers that make tumor cells responsive to radiotherapy. A class of molecules whose expression is affected by radiotherapy is the microRNAs (miRNAs) that present promising regulators of the radioresponse. Eighteen miRNAs (miR-26a, -124, -128, -135b, -145, -153, -181a/b, -203, -21, -210, -212, -221/222, -223, -224, -320, and -590), involved in the pathogenesis of GBM and its radioresponsive state, were reviewed to identify their role in GBM and their potential as radiosensitizing agents. MicroRNAs-26a, -124, -128, -145, -153, -181a/b, -203, -221/222, -223, -224, -320, and -590 promoted GBM radiosensitivity, while microRNAs-135b, -21, -210, and -212 encouraged radioresistance. Ectopic overexpression of the radiosensitivity promoting miRNAs and knockdown of the radioresistant miRNAs represent a prospective radiotherapy enhancement opportunity. This offers a glimmer of hope for a group of the most unfortunate patients known to medicine.