Oversupplying metabolizable protein during late gestation to beef cattle does not influence ante- or postpartum glucose-insulin kinetics but does affect prepartum insulin resistance indices and colostrum insulin content.
Koryn S HareGregory Brent PennerMichael A SteeleKatharine M WoodPublished in: Journal of animal science (2022)
The objective of this study was to evaluate whether oversupplying metabolizable protein (MP) during late gestation influences glucose and insulin concentrations, and insulin resistance (IR) in late gestation and early lactation. Crossbred Hereford, first-lactation heifers were individually fed diets to supply 133% (HMP, n = 11) or 100% (CON, n = 10) of their predicted MP requirements for 55 ± 4 d (mean ± SD) prior to calving. All heifers received a common lactation ration formulated to meet postpartum requirements (103% MP and 126% ME). After feed was withheld for 12 h, cattle underwent an intravenous glucose tolerance test (IVGTT) on days -6.7 ± 0.9 and 14.3 ± 0.4 by infusing a 50% dextrose solution (1.36 g glucose/kg BW0.75) through a jugular catheter with plasma collected at -10, 0 (immediately after infusion), 5, 10, 15, 20, 25, 30, 45, 60, 75, 90, and 120 min, respective to the infusion. Glucose and insulin concentrations were assessed. Insulin resistance indices (homeostasis model of insulin resistance [HOMA-IR], quantitative insulin sensitivity check index [QUICKI], revised quantitative insulin sensitivity check index [RQUICK], and RQUICKI incorporating serum beta-hydroxybutyrate concentrations [RQUICKIBHB]) were calculated from measurements of serum non-esterified fatty acids and beta-hydroxybutyrate and plasma glucose and insulin concentrations on days -34 ± 4, -15 ± 4, 7 ± 1, 28 ± 3, 70 ± 3, and 112 ± 3. Colostrum samples were collected within an hour of calving (prior to suckling) and analyzed for insulin concentration. Data were analyzed as a randomized block design using the PROC GLIMMIX of SAS, accounting for repeated measurements when necessary. Baseline (-10 min) plasma glucose and insulin concentrations were elevated (P ≤ 0.038) for HMP heifers during the antepartum IVGTT, but not (P ≥ 0.25) during the postpartum IVGTT. Plasma glucose and insulin concentrations throughout the antepartum or postpartum IVGTT did not differ (P ≥ 0.18) by prepartum treatment, nor did other glucose and insulin IVGTT parameters (i.e., max concentration and time to reach max concentration, nadir values, clearance rates and half-lives, area-under-the-curve, and insulin sensitivity index; P ≥ 0.20). Antepartum IVGTT IR indices indicated that HMP heifers were more (P ≤ 0.011) IR than their counterparts. Similarly, the prepartum HOMA-IR was greater (P = 0.033) for HMP heifers, suggesting increased IR. Postpartum IR indices did not (P ≥ 0.25) indicate that prepartum MP consumption impacted postpartum IR. Colostrum insulin concentration was increased (P = 0.004) by nearly 2-fold for HMP relative to CON heifers. These data demonstrate that prepartum MP overfeeding alters baseline glucose-insulin concentrations in late-pregnant beef heifers and increases colostrum insulin content without having carry-over effects on postpartum glucose-insulin concentrations and IR.
Keyphrases
- type diabetes
- glycemic control
- insulin resistance
- blood glucose
- human milk
- adipose tissue
- preterm infants
- fatty acid
- high resolution
- weight loss
- pregnant women
- polycystic ovary syndrome
- electronic health record
- binding protein
- machine learning
- mass spectrometry
- preterm birth
- dairy cows
- amino acid
- protein protein
- high fat diet induced
- psychometric properties