The Cannabinoid Ligand Arachidonyl-2'-Chloroethylamide (ACEA) Ameliorates Depressive and Overactive Bladder Symptoms in a Corticosterone-Induced Female Wistar Rat Model.
Łukasz ZapałaGrzegorz NiemczykPiotr ZapałaArtur WdowiakIwona BojarTomasz KluzAleksandra SzopaAnna SerefkoPiotr RadziszewskiAndrzej WrobelPublished in: International journal of molecular sciences (2023)
There is growing need to increase the knowledge on the cannabinoid ligands in the treatment of overactive bladder. Among potential candidates, arachidonyl-2'-chloroethylamide (ACEA), a selective cannabinoid CB1 receptor agonist is proposed. The aim of this paper was to determine if ACEA, a selective cannabinoid CB1 receptor agonist, could reverse the effects of corticosterone (CORT), characteristic of depressive and bladder overactivity potential. The animals (48 female rats) were divided into four groups: I-control, II-received CORT, III-received ACEA, and IV-received the combination of CORT and ACEA. The conscious cystometry, forced swim test (FST), and locomotor activity measurements were performed 3 days after the last dose of ACEA, followed by ELISA measurements. In group IV, ACEA restored urodynamic parameters that were altered by CORT. CORT prolonged the immobility time in FST and the values were lowered by ACEA. ACEA normalized the expression of c-Fos in all the analyzed central micturition centers (group IV vs. group II). ACEA restored the CORT-induced changes in the biomarkers in urine (BDNF, NGF), bladder detrusor (VAChT, Rho kinase), bladder urothelium (CGRP, ATP, CRF, OCT-3, TRPV1), and hippocampus (TNF-α, IL-1β and Il-6, CRF, IL-10, BDNF, NGF). In conclusion, ACEA was proven to reverse CORT-induced changes in both cystometric and biochemical parameters that are determinants of OAB/depression, which represents an example of an existing link between OAB and depression via cannabinoid receptors.
Keyphrases
- spinal cord injury
- healthcare
- depressive symptoms
- stress induced
- bipolar disorder
- poor prognosis
- growth factor
- oxidative stress
- mouse model
- endothelial cells
- urinary tract
- drug induced
- physical activity
- botulinum toxin
- tyrosine kinase
- diabetic rats
- high glucose
- replacement therapy
- monoclonal antibody
- prefrontal cortex