UV light-driven late-stage skeletal reorganization to diverse limonoid frameworks: A proof of concept for photobiosynthesis.
Jun WuShi-Jun LiLong JiangXiao-Chi MaYu LanLi ShenPublished in: Science advances (2023)
Late-stage skeletal reorganization (LSSR) is a type of fascinating organic transformation processes in natural product total synthesis. However, few facile and effective LSSR methodologies have hitherto been developed. Here, LSSR of limonoid natural products via photochemical cascades is first reported. Starting from xyloelves A and B, nine distinct limonoid products with five unprecedented scaffolds are generated. The photocascade pathways of these natural products and mechanistic rationale via intramolecular triplet energy transfer are revealed by quantum mechanical calculations. Most notably, ultraviolet light-driven transannular and stereoselective C → C 1,4-acyl migration is first found as a photochemical approach, particularly for LSSR of natural products. This approach holds promise for designing LSSR strategies to access bioactive cage-like molecules. Besides that, our findings provide a clear proof of concept for natural product photobiosynthesis. Xyloelf A, substantially ameliorating concanavalin A-induced liver injury in mice, could be used as a unique molecular template for hepatoprotective drug discovery.