Login / Signup

Brain and cancer associated binding domain mutations provide insight into CTCF's relationship with chromatin and its ability to act as a chromatin organizer.

Jane SkokCatherine DoGuimei JiangGiulia CovaChristos KatsifisDomenic NarducciJie YangTheodore SakellaropoulosRaphael VidalPriscillia LhoumaudAristotelis TsirigosFaye Fara RegisNata KakabadzeElphѐge P NoraMarcus NoyesXiaodong ChengAnders S Hansen
Published in: Research square (2024)
Although only a fraction of CTCF motifs are bound in any cell type, and approximately half of the occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique properties of each protein, but also on the genomic context of bound sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.
Keyphrases