Login / Signup

An Engineered Sso7d Variant Enables Efficient Magnetization of Yeast Cells.

Carlos A Cruz-TeranKaitlyn BaconNikki McArthurBalaji M Rao
Published in: ACS combinatorial science (2018)
Magnetization using cheap and minimally toxic materials, such as iron oxide nanoparticles can enable easy separation of cells from culture medium and is relevant to several industrial applications. Here, we show that cell surface expression of a mutant protein that binds iron oxide can enable efficient magnetization of yeast cells. We screened a combinatorial library of mutants derived from the Sso7d protein scaffold to isolate proteins that exhibit preferential binding to iron oxide. One of the isolated mutants, SsoFe2, was chosen for further characterization. Yeast cells expressing SsoFe2 as fusions to a cell wall protein-but not other Sso7d mutants with similar overall protein charge or amino acid composition-preferentially bind iron oxide when present in a solution with high protein concentration and in the presence of 1000-fold excess of competitor yeast cells. Moreover, coexpression of cell surface SsoFe2 enables efficient magnetic capture and separation of yeast cells expressing an enzyme (glucose oxidase) on the cell surface from yeast culture medium, and solutions with high protein concentration or containing other metal oxides. Therefore, SsoFe2-enabled magnetization can enable a range of industrial and biotechnology applications, where easy separation of cells or organelles from complex media is desirable.
Keyphrases