Login / Signup

Aberrant Induction of a Mesenchymal/Stem Cell Program Engages Senescence in Normal Mammary Epithelial Cells.

Benjamin L BrysonIlaria TamagnoSarah E TaylorNeetha ParameswaranNoah M ChernoskyNikhila BalasubramaniamMark W Jackson
Published in: Molecular cancer research : MCR (2020)
Although frequently associated with tumor progression, inflammatory cytokines initially restrain transformation by inducing senescence, a key tumor-suppressive barrier. Here, we demonstrate that the inflammatory cytokine, oncostatin M, activates a mesenchymal/stem cell (SC) program that engages cytokine-induced senescence (CIS) in normal human epithelial cells. CIS is driven by Snail induction and requires cooperation between STAT3 and the TGFβ effector, SMAD3. Importantly, as cells escape CIS, they retain the mesenchymal/SC program and are thereby bestowed with a set of cancer SC (CSC) traits. Of therapeutic importance, cells that escape CIS can be induced back into senescence by CDK4/6 inhibition, confirming that the mechanisms allowing cells to escape senescence are targetable and reversible. Moreover, by combining CDK4/6 inhibition with a senolytic therapy, mesenchymal/CSCs can be efficiently killed. Our studies provide insight into how the CIS barriers that prevent tumorigenesis can be exploited as potential therapies for highly aggressive cancers. IMPLICATIONS: These studies reveal how a normal cell's arduous escape from senescence can bestow aggressive features early in the transformation process, and how this persistent mesenchymal/SC program can create a novel potential targetability following tumor development.
Keyphrases