Login / Signup

Evaluation of human antibodies from vaccinated volunteers for protection against Yersinia pestis infection.

Li ZhangBinyang ZhengJing LuHaisheng WuHailian WuQi ZhangLei JiaoHongxing PanJianfang Zhou
Published in: Microbiology spectrum (2024)
Yersinia pestis has a broad host range and has caused lethal bubonic and pneumonic plague in humans. With the emergence of multiple resistant strains and the potential for biothreat use, there is an urgent need for new therapeutic strategies that can protect populations from natural or deliberate infection. Targeting F1 has been proven to be the main strategy for developing vaccines and therapeutic antibodies, but data on anti-F1 antibodies, especially in humans, are scarce. To date, three human anti-F1 monoclonal antibodies (m252, αF1Ig2, and αF1Ig8) from naive populations have been reported. Here, we constructed an antibody library from vaccinees immunized with the plague subunit vaccine IIa by phage display. The genetic basis, epitopes, and biological functions of the obtained mAbs were assessed and evaluated in plague-challenged mice. Three human mAbs, namely, F3, F19, and F23, were identified. Their biolayer responses were 0.4, 0.6, and 0.6 nm, respectively. The dissociation constants (K D ) of the F1 antigen were 1 pM, 0.165 nM, and 1 pM, respectively. Although derived from distinct Ab lineages, that is, VH3-30-D3-10-JH4 (F3&F23) and VH3-43-D6-19-JH4 (F19), these mAbs share similar binding sites in F1 with some overlap with αF1Ig8 but are distinct from αF1Ig2. Each of them provided a significant protective effect for Balb/c mice against a 100 median lethal dose (MLD) challenge of a virulent Y. pestis strain when administered at a dose of 100 µg. No synergistic or antagonistic effects were observed among them. These mAbs are novel and excellent candidates for further drug development and use in clinical practice.IMPORTANCEIn this study, we identified three human monoclonal antibodies with a high affinity to F1 protein of Yersinia pestis . We discovered that they have relatively lower somatic hypermutations compared with antibodies, m252, αF1Ig2, and αF1Ig8, derived from the naive library reported previously. We also observed that these mAbs share similar binding sites in F1 with some overlapping with αF1Ig8 but distinct from that of αF1Ig2. Furthermore, each of them could provide complete protection for mice against a lethal dose of Yersinia pestis challenge. Our data provided new insights into the anti-F1 Ab repertories and their associated epitopes during vaccination in humans. The findings support the additional novel protective human anti-F1Abs for potential therapeutics against plaque.
Keyphrases