2-Deoxyglucose-Modified Folate Derivative: Self-Assembling Nanoparticle Able to Load Cisplatin.
Shaoming JinZhongyao DuPengjie WangHuiyuan GuoHao ZhangXingen LeiFazheng RenPublished in: Molecules (Basel, Switzerland) (2019)
Folic acid has been widely introduced into nano-drug delivery systems to give nanoparticle-targeted characteristics. However, the poor water solubility of folic acid may hinder the exploitation of its ability to load antineoplastic drugs. In the present study, we designed a new folate derivative (FA-2-DG) synthesized from folic acid and 2-Deoxyglucose (2-DG). The aim of this study was to evaluate the self-assembly characteristics of FA-2-DG, and its ability of loading cisplatin. The critical micelle concentration was 7.94 × 10-6 mol L-1. Fourier transform infrared spectroscopy indicated that hydrogen bonding interaction is a main driving force for the self⁻assembly of FA-2-DG. The particle was stable in pure water or 0.5% bovine serum albumin dispersions. By forming a coordination bond, the particles assembled from FA-2-DG can load cisplatin. The loading efficiency was maximal when the molar ratio of FA-2-DG to cisplatin was 2:1.