The effects of aerobic exercise on corpus callosum integrity: systematic review.
Paul D LoprinziJacob HarperToshikazu IkutaPublished in: The Physician and sportsmedicine (2020)
Objective: To evaluate the influence of exercise on the body and genu of the corpus callosum (CC), which is a critical brain structure involved in facilitating interhemispheric communication. Methods: Studies were identified using electronic databases, including PubMed, PsychInfo, Sports Discus and Google Scholar. The search terms, including their combinations, included exercise, physical activity, cardiorespiratory fitness, interhemispheric, and corpus callosum. To be eligible for inclusion in this review, studies had to be published in English; employ a cross-sectional, prospective or experimental design; include a measure of exercise as the independent variable; and the outcome variable had to include an integrity, volumetric or functional measure of the CC. Extraction parameters include study design, study population, exercise protocol, CC assessment, main findings regarding the relationship between exercise and the CC, and the evaluated or speculated mechanisms of this relationship. Results: 20 articles met the study inclusion criteria. Among these, 5 were conducted in animals and 15 were conducted in humans. Among the 5 animal studies, all provided suggestive evidence associating aerobic exercise with increased white matter integrity. Among the 15 human studies, 6 studies employed tract-based special statistics (TBSS), 4 utilized regions of interest (ROI) approach and 5 executed whole brain voxel wise analysis. Changes in the body was detected by 5 out of 6 TBSS studies and the genu by 3. Out of 4 ROI studies, three detected changes in the genu, but only one did in the body (out of 3 studies). One whole brain voxelwise study detected changes in the CC body of old adults and two found changes in the genu. Conclusion: This review provides evidence to suggest that aerobic exercise, and in turn, enhanced cardiorespiratory fitness, are associated with structural and functional outcomes increasing CC integrity.