Eleven grand challenges in single-cell data science.
David LähnemannJohannes KösterEwa SzczurekDavis J McCarthyStephanie C HicksMark D RobinsonCatalina A VallejosKieran R CampbellNiko BeerenwinkelAhmed MahfouzLuca PinelloPavel SkumsAlexandros StamatakisCamille Stephan-Otto AttoliniSamuel AparicioJasmijn BaaijensMarleen BalvertBuys de BarbansonAntonio CappuccioGiacomo CorleoneBas E DutilhMaria FlorescuVictor GuryevRens HolmerKatharina JahnThamar Jessurun LoboEmma M KeizerIndu KhatriSzymon M KielbasaJan O KorbelAlexey M KozlovTzu-Hao KuoBoudewijn P F LelieveldtIon I MandoiuJohn C MarioniTobias MarschallFelix MölderAmir NiknejadLukasz RaczkowskiMarcel ReindersJeroen de RidderAntoine-Emmanuel SalibaAntonios SomarakisOliver StegleFabian J TheisHuan YangAlex ZelikovskyAlice C McHardyBenjamin J RaphaelSohrab P ShahAlexander SchönhuthPublished in: Genome biology (2020)
The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands-or even millions-of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.