Login / Signup

The drnf1 Gene from the Drought-Adapted Cyanobacterium Nostoc flagelliforme Improved Salt Tolerance in Transgenic Synechocystis and Arabidopsis Plant.

Lijuan CuiYinghui LiuYiwen YangShuifeng YeHongyi LuoBaosheng QiuXiang Gao
Published in: Genes (2018)
Environmental abiotic stresses are limiting factors for less tolerant organisms, including soil plants. Abiotic stress tolerance-associated genes from prokaryotic organisms are supposed to have a bright prospect for transgenic application. The drought-adapted cyanobacterium Nostoc flagelliforme is arising as a valuable prokaryotic biotic resource for gene excavation. In this study, we evaluated the salt-tolerant function and application potential of a candidate gene drnf1 from N. flagelliforme, which contains a P-loop NTPase (nucleoside-triphosphatase) domain, through heterologous expression in two model organisms Synechocystis sp. PCC 6803 and Arabidopsis thaliana. It was found that DRNF1 could confer significant salt tolerance in both transgenic organisms. In salt-stressed transgenic Synechocystis, DRNF1 could enhance the respiration rate; slow-down the accumulation of exopolysaccharides; up-regulate the expression of salt tolerance-related genes at a higher level, such as those related to glucosylglycerol synthesis, Na⁺/H⁺ antiport, and sugar metabolism; and maintain a better K⁺/Na⁺ homeostasis, as compared to the wild-type strain. These results imply that DRNF1 could facilitate salt tolerance by affecting the respiration metabolism and indirectly regulating the expression of important salt-tolerant genes. Arabidopsis was employed to evaluate the salt tolerance-conferring potential of DRNF1 in plants. The results show that it could enhance the seed germination and shoot growth of transgenic plants under saline conditions. In general, a novel prokaryotic salt-tolerant gene from N. flagelliforme was identified and characterized in this study, enriching the candidate gene pool for genetic engineering in plants.
Keyphrases
  • genome wide identification
  • genome wide
  • arabidopsis thaliana
  • copy number
  • transcription factor
  • poor prognosis
  • plant growth
  • wild type
  • heat stress
  • gene expression