Primitive Oligomeric RNAs at the Origins of Life on Earth.
Jacques DemongeotMichel ThellierPublished in: International journal of molecular sciences (2023)
There are several theories on the origin of life, which differ by choosing the preponderant factor of emergence: main function (autocatalysis versus replication), initial location (black smokers versus ponds) or first molecule (RNA versus DNA). Among the two last ones, the first assumes that an RNA world involving a collaboration of small RNAs with amino-acids pre-existed and the second that DNA-enzyme-lipid complexes existed first. The debate between these classic theories is not closed and the arguments for one or the other of these theories have recently fueled a debate in which the two have a high degree of likelihood. It therefore seems interesting to propose a third intermediate way, based on the existence of an RNA that may have existed before the latter stages postulated by these theories, and therefore may be the missing link towards a common origin of them. To search for a possible ancestral structure, we propose as candidate a small RNA existing in ring or hairpin form in the early stages of life, which could have acted as a "proto-ribosome" by favoring the synthesis of the first peptides. Remnants of this putative candidate RNA exist in molecules nowadays involved in the ribosomal factory, the concentrations of these relics depending on the seniority of these molecules within the translation process.