Processing oxidatively damaged bases at DNA strand breaks by APE1.
Amy M WhitakerWesley J StarkBret D FreudenthalPublished in: Nucleic acids research (2022)
Reactive oxygen species attack the structure of DNA, thus altering its base-pairing properties. Consequently, oxidative stress-associated DNA lesions are a major source of the mutation load that gives rise to cancer and other diseases. Base excision repair (BER) is the pathway primarily tasked with repairing DNA base damage, with apurinic/apyrimidinic endonuclease (APE1) having both AP-endonuclease and 3' to 5' exonuclease (exo) DNA cleavage functions. The lesion 8-oxo-7,8-dihydroguanine (8-oxoG) can enter the genome as either a product of direct damage to the DNA, or through polymerase insertion at the 3'-end of a DNA strand during replication or repair. Importantly, 3'-8-oxoG impairs the ligation step of BER and therefore must be removed by the exo activity of a surrogate enzyme to prevent double stranded breaks and cell death. In the present study, we use X-ray crystallography to characterize the exo activity of APE1 on 3'-8-oxoG substrates. These structures support a unified APE1 exo mechanism that differs from its more canonical AP-endonuclease activity. In addition, through complementation of the structural data with enzyme kinetics and binding studies employing both wild-type and rationally designed APE1 mutants, we were able to identify and characterize unique protein: DNA contacts that specifically mediate 8-oxoG removal by APE1.
Keyphrases
- circulating tumor
- cell free
- single molecule
- oxidative stress
- cell death
- nucleic acid
- reactive oxygen species
- transcription factor
- wild type
- dna repair
- circulating tumor cells
- dna damage
- squamous cell carcinoma
- gene expression
- computed tomography
- signaling pathway
- big data
- contrast enhanced
- diabetic rats
- squamous cell
- cell cycle arrest