Login / Signup

Ruthenium ion catalysed C-C bond activation in lignin model compounds - towards lignin depolymerisation.

Susana Guadix-MonteroMala A SainnaJiangpeiyun JinJack ReynoldsW Graham ForsytheGary N SheldrakeDavid J WillockMeenakshisundaram Sankar
Published in: Catalysis science & technology (2023)
Lignin is the most abundant renewable feedstock to produce aromatic chemicals, however its depolymerisation involves the breaking of several C-O and C-C inter-unit linkages that connect smaller aromatic units that are present in lignin. Several strategies have been reported for the cleavage of the C-O inter-unit linkages in lignin. However, till today, only a few methodologies have been reported for the effective breaking or the conversion of the recalcitrant C-C inter unit linkages in lignin. Here we report the ruthenium ion catalysed oxidative methodology as an effective system to activate or convert the most recalcitrant inter unit linkages such as β-5 and 5-5' present in lignin. Initially, we used biphenyl as a model compound to study the effectiveness of the RICO methodology to activate the 5-5' C-C linkage. After 4 h reaction at 22 °C, we achieved a 30% conversion with 75% selectivity towards benzoic acid and phenyl glyoxal as the minor product. To the best of our knowledge this is the first ever oxidative activation of the C-C bond that connects the two phenyl rings in biphenyl. DFT calculation revealed that the RuO 4 forms a [3 + 2] adduct with one of the aromatic C-C bonds resulting in the opening of the phenyl ring. Biphenyl conversion could be increased by increasing the amount of oxidant; however, this is accompanied by a reduction in the carbon balance because of the formation of CO 2 and other unknown products. We extended this RICO methodology for the oxidative depolymerisation of lignin model hexamer containing β-5, 5-5' and β-O-4 linkages. Qualitative and quantitative analyses of the reaction mixture were done using 1 H, 13 C NMR spectroscopy methods along with GC-MS and Gel Permeation Chromatographic (GPC) methods. Advanced 2D NMR spectroscopic methods such as HSQC, HMBC and 31 P NMR spectroscopy after phosphitylation of the mixture were employed to quantitatively analyse the conversion of the β-5, 5-5' and β-O-4 linkages and to identify the products. After 30 min, >90% of the 5-5' and linkages and >80% of the β-5' are converted with this methodology. This is the first report on the conversion of the 5-5' linkage in lignin model hexamer.
Keyphrases