Login / Signup

Molecular Mechanisms of Action of Selected Substances Involved in the Reduction of Benzo[a]pyrene-Induced Oxidative Stress.

Bożena BukowskaPiotr Duchnowicz
Published in: Molecules (Basel, Switzerland) (2022)
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.
Keyphrases