Login / Signup

Jasmonate activates a CsMPK6-CsMYC2 module that regulates the expression of β-citraurin biosynthetic genes and fruit coloration in orange (Citrus sinensis).

Pengtao YueZhenghua JiangQuan SunRanran WeiYingzi YinZong-Zhou XieRobert M LarkinJun-Li YeLi-Jun ChaiXiu-Xin Deng
Published in: The Plant cell (2022)
Carotenoids are natural pigments that influence the color of citrus fruit. The red-colored carotenoid β-citraurin is responsible for the peel color in 'Newhall' orange (Citrus sinensis). Although jasmonates are known to regulate the biosynthesis and accumulation of carotenoids, their effects on β-citraurin biosynthesis in citrus fruit remain unclear. Here, we determined that treatment with methyl jasmonate (MeJA) significantly promotes fruit coloration and β-citraurin production in 'Newhall' orange. A MeJA treatment induced the expression of CsMYC2, which encodes a transcription factor that serves as a master regulator of jasmonate responses. CsMYC2 bound the promoter of the gene that encodes carotenoid cleavage dioxygenase 4b (CsCCD4b), the key gene for β-citraurin biosynthesis, and the promoters of genes that encode phytoene synthase (CsPSY), lycopene β-cyclase (CsLCYb), and β-carotene hydroxylase (CsBCH) and induced their expression. In addition, CsMYC2 promoted CsMPK6 expression. Notably, we found that CsMPK6 interacted with CsMYC2 and that this interaction decreased the stability and DNA-binding activity of CsMYC2. Thus, we conclude that negative feedback regulation attenuates JA signaling during the jasmonate-induced coloration of citrus fruit. Together, our findings indicate that jasmonates induce β-citraurin biosynthesis in citrus by activating a CsMPK6-CsMYC2 cascade, thereby affecting fruit coloration.
Keyphrases