Login / Signup

Integrity of Membrane Structures in Giant Unilamellar Vesicles as Assay for Antioxidants and Prooxidants.

Xiao-Chen LiuHui-Hui DuLi-Min FuRui-Min HanPeng WangXi-Cheng AiJian-Ping ZhangLeif H Skibsted
Published in: Analytical chemistry (2018)
We have attempted to evaluate, on the basis of optical microscopy for a single giant unilamellar vesicle (GUV), the potency of antioxidants in protecting GUV membranes from oxidative destruction. Photosensitized membrane budding of GUVs prepared from soybean phosphatidylcholine with chlorophyll a (Chl a) and β-carotene (β-Car) as photosensitizer and protector, respectively, were followed by microscopic imaging. A dimensionless entropy parameter, ΔE, as derived from the time-resolved microscopic images, was employed to describe the evolution of morphological variation of GUVs. As an indication of membrane instability, the budding process showed three successive temporal regimes as a common feature: a lag phase prior to the initiation of budding characterized by LP (in s), a budding phase when ΔE increased with a rate of kΔE (in s-1), and an ending phase with morphology stabilized at a constant ΔEend (dimensionless). We show that the phase-associated parameters can be objectively obtained by fitting the ΔE-t kinetics curves to a Boltzmann function and that all of the parameters are rather sensitive to β-Car concentration. As for the efficacy of these parameters in quantifying the protection potency of β-Car, kΔE is shown to be most sensitive for β-Car in a concentration regime of biological significance of <1 × 10-7 M, whereas LP and ΔEend are more sensitive for β-Car concentrations exceeding 1 × 10-7 M. Furthermore, based on the results of GUV imaging and fluorescence and Raman spectroscopies, we have revealed for different phases the mechanistic interplay among 1O2* diffusion, PC-OOH accumulation, Chl a and/or β-Car consumption, and the morphological variation. The developed assay should be valuable for characterizing the potency of antioxidants or prooxidants in the protection or destruction of the membrane integrity of GUVs.
Keyphrases
  • high resolution
  • high throughput
  • deep learning
  • machine learning
  • single molecule
  • photodynamic therapy
  • high speed
  • physical activity
  • optical coherence tomography