In this study, we aimed to understand the characteristics of the gut microbial composition in a healthy Chinese population and to evaluate if they differed across different regions. In addition, we aimed to understand the changes in the gut microbial composition over time. We collected 239 fecal samples from healthy Chinese adults living in four regions and performed a 1-year time cohort study in a small population in Beijing. The Chinese gut microbiota share 34 core bacterial genera and 39 core bacterial species, which exist in all collected samples. Several disease-related microorganisms (DRMs), virulence factors, and antibiotic resistance genes were found in one or more healthy Chinese samples. Differences in gut microbiota were observed in samples from different regions, locations, individuals, and time points. Compared to other factors, time was associated with a lower degree of change in the gut microbiota. Our findings revealed spatial and temporal changes in the gut microbiota of healthy Chinese individuals. Compared to fecal microbiomes of 152 samples in the publicly released the Human Microbiome Project (HMP) project from the United States, samples in this study have higher variability in the fecal microbiome, with higher richness, Shannon diversity indices, and Pielou evenness indexes, at both the genus and species levels. The microbiota data obtained in this study will provide a detailed basis for further understanding the composition of the gut microbiota in the healthy Chinese population. IMPORTANCE China accounts for approximately 1/5th of the world's total population. Differences in environment, ethnicity, and living habits could impart unique features to the structure of the gut microbiota of Chinese individuals. In 2016, we started to investigate healthy Chinese people and their gut microbiomes. Phase I results for 16S rRNA amplicons have been released. However, owing to the limitations of 16S rRNA amplicon sequencing, the gut microbiome of a healthy Chinese population could not be examined thoroughly at the species level, and the detailed changes in the gut microbiota over time need to be investigated. To address these knowledge gaps, we started a phase II study and investigated the basis for variations in the gut microbiome composition in a healthy Chinese population at the species level using shotgun metagenomics technology. In the phase II study, we also conducted a time scale analysis of fecal samples from healthy Chinese subjects, as a pioneered study, which quantitatively clarified the changes in the gut microbiota at both the spatial and temporal levels and elucidated the distribution pattern of DRMs in healthy Chinese individuals.