Login / Signup

The leaf idioblastome of the medicinal plant Catharanthus roseus reveals commitment with stress resistance and alkaloid metabolism.

Joana G GuedesRogério RibeiroInês CarqueijeiroAna Luísa GuimarãesCláudia BispoJohn Patrick ArcherHerlander AzevedoNuno A FonsecaMariana Sottomayor
Published in: Journal of experimental botany (2023)
Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell-type localizations and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialised idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterised. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast with surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the keys to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.
Keyphrases