Login / Signup

Effect of Postbiotic Based on Lactic Acid Bacteria on Semen Quality and Health of Male Rabbits.

Jesús Vicente DíazMaria-Jose Carrascosa ArgenteMaría de la Luz García
Published in: Animals : an open access journal from MDPI (2021)
The aim of this study was to evaluate the effect of lactic acid bacteria-based postbiotic supplementation on semen characteristics and hematological and biochemical profiles in rabbits. A total of 28 males were randomly allocated into two groups. Males received a Control diet and Enriched diet supplemented with postbiotic for 15 weeks (4 weeks of adaptation period and 11 weeks of experimental period). Body weight, feed intake and semen characteristics were recorded weekly. Hematological profile was recorded at the beginning and end of the experiment and biochemical profile at 0, 5, 10 and 15 weeks. Bayesian methodology was used for the statistical analysis. Feed intake was higher in Control diet (125.2 g) than in the Enriched diet (118.6 g, p = 1.00). The percentages of abnormal spermatozoa were higher in Control diet than in Enriched diet (30% and 22%; p = 0.93) and the acrosome integrity percentage was lower (97% and 96%; p = 0.87). The hematological profile was within the range for healthy rabbits. The plasmatic level of alanine aminotransferase was higher in Control diet than Enriched diet at 5 and 10 weeks (p = 0.93 and p = 0.94, respectively) and alkaline phosphatase was similar in Control diet throughout the experiment, but decreased in Enriched diet (p = 0.97). No difference was found in kidney parameters (uric nitrogen and creatinine). Enriched diet showed higher total protein and globulin than Control diet (p = 0.99). Phosphorus was lower (p = 0.92) in Control diet than in Enriched diet. In conclusion, the addition of the postbiotic based on lactic acid bacteria seems to improve the quality of the semen and the liver profile in rabbits.
Keyphrases
  • weight loss
  • physical activity
  • lactic acid
  • healthcare
  • public health
  • body weight
  • social media
  • small molecule
  • uric acid
  • health information
  • heavy metals