Login / Signup

Sequential Process of Subcritical Water Hydrolysis and Hydrothermal Liquefaction of Butia Capitata Endocarp to Obtain Fermentable Sugars, Platform Chemicals, Bio-oil, and Biochar.

Beatriz S Y CostaHenrique N da CunhaCrisleine P DraszewskiJoão C Martins-VieiraMichel BrondaniGiovani L ZabotMarcus V TresFernanda de CastilhosEderson R AbaideFlávio D MayerRonaldo Hoffmann
Published in: Applied biochemistry and biotechnology (2023)
Butia capitata endocarp (BCE) is a biomass residue with the potential to produce a wide variety of bio-products. The processing of BCE in a sequential process of subcritical water hydrolysis (SWH) and hydrothermal liquefaction (HTL) was investigated to obtain fermentable sugars, platform chemicals, bio-oil, and biochar. The SWH was evaluated at 230 and 260 °C and solvent: feed mass ratios (R) of 10 and 20 for the production of fermentable sugars and platform chemicals. The solid residue from SWH was sequentially submitted to the HTL at 330 and 360 °C for bio-oil and biochar production. The results were analyzed by comparing the sequential (SWH/HTL) and individual (HTL only) processes. The highest yields of fermentable sugars (5.26 g/ 100 g BCE) were obtained for SWH at 260 °C and R-20 with higher contents of xylose (2.64 g/100 g BCE) and cellobiose (1.75 g/100 g BCE). The highest yields of platform chemicals (2.44 g/100 g BCE) were obtained for SWH at 260 °C and R-10 with higher contents of acetic acid (1.78 g/100 g BCE) and furfural (0.54 g/100 g BCE). The highest yield of bio-oil (25.30 g/100 g BCE) occurred in HTL individual process at 360 °C and R-20. Sequential process SWH/HTL showed a decrease in bio-oil yield but maintained a similar biochar yield compared to HTL, in addition to the production of fermentable sugars and platform chemicals.
Keyphrases
  • anaerobic digestion
  • sewage sludge
  • heavy metals
  • high throughput
  • fatty acid
  • municipal solid waste
  • mass spectrometry
  • high resolution
  • plant growth
  • saccharomyces cerevisiae