Revolutions in Chemistry: Assessment of Six 20th Century Candidates (The Instrumental Revolution; Hückel Molecular Orbital Theory; Hückel's 4 n + 2 Rule; the Woodward-Hoffmann Rules; Quantum Chemistry; and Retrosynthetic Analysis).
Jeffrey I SeemanPublished in: JACS Au (2023)
Six 20th century candidates for revolutions in chemistry are examined, using a definitional scheme published recently by the author. Six groupings of 13 characteristics of revolutions in science are considered: causes and birthings of revolutions, relationships between the old and the new, conceptual qualities of the candidate revolutions, instrumental and methodological functions, social construction of knowledge and practical considerations, and testimonials. The Instrumental Revolution was judged to be a revolution in chemistry because of the enormous increase in community-wide knowledge provided by the new instruments and the intentionality in the identification of specific target instruments, in the mindfulness in their design, manufacture, testing, use, and ultimately commercialization. The Woodward-Hoffmann rules were judged to precipitate the Quantum Chemistry Revolution because of theoretical, practical, and social construction of knowledge characteristics. Neither Hückel molecular orbital theory nor Hückel's 4 n + 2 rule was considered an initiator of a revolution in chemistry but rather participants in the Quantum Chemistry Revolution. Retrosynthetic analysis was not judged to initiate a revolution in chemistry.