Hsa_circ_0001707 regulates endothelial-mesenchymal transition in esophageal squamous cell carcinoma via miR-203a-3p/Snail2 pathway.
Han GaoMingjun SunZhikui GaoJing SongDerong TangRan LiuPublished in: Environmental toxicology (2023)
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high mortality and poor prognosis. Despite intensive research focused on tumor suppression, the 5-year survival rate of ESCC is lower than 15%. Therefore, investigate fundamental mechanisms involved in ESCC is on-demand crucial for diagnostics and developing targeted therapeutic drugs. Circular RNAs (circRNAs), as an emerging class of non-coding RNA, have been elucidated that circRNAs participated in regulating a variety of pathological processes and tumorigenesis. Nevertheless, the functional role of circRNAs in the occurrence and development of ESCC remains unclear. We identify a novel circRNA (hsa_circ_0001707), which was highly expressed in ESCC patients' tissues and cell lines. Furthermore, gain- and loss-of-function assays were performed and found that overexpression of hsa_circ_0001707 significantly promote tumor proliferation, metastasis, and invasion. By functioning as a competing endogenous RNA (ceRNA), the dual-luciferase activity assay verified that hsa_circ_0001707 can endogenously bind with miR-203a-3p and regulate its downstream gene Snail2. Rescue assay further confirms that hsa_circ_0001707 downregulation could partially attenuate the facilitation effect of miR-203a-3p, thereby inhibiting the endothelial-mesenchymal transition (EMT) process of ESCC. Our results suggested that hsa_circ_0001707 play an oncogenic role in the pathogenesis of ESCC, which might be a potential biomarker for diagnostics and targeting therapy.
Keyphrases
- poor prognosis
- epithelial mesenchymal transition
- long non coding rna
- signaling pathway
- high throughput
- stem cells
- cell proliferation
- bone marrow
- gene expression
- endothelial cells
- risk assessment
- newly diagnosed
- transcription factor
- type diabetes
- cardiovascular events
- dna methylation
- prognostic factors
- genome wide
- drug delivery
- risk factors
- coronary artery disease
- mesenchymal stem cells
- genome wide identification
- cell therapy
- drug induced