The terpyridine isomer game: from chelate to coordination network building block.
Catherine E HousecroftEdwin C ConstablePublished in: Chemical communications (Cambridge, England) (2020)
The first 4,2':6',4''-terpyridine (4,2':6',4''-tpy) containing coordination polymer was reported over 20 years ago and in the last decade, there has been increased interest in the use of ditopic 4,2':6',4''-tpy ligands as linkers in coordination polymers and 2D-networks. Functionalization in the 4'-position of 4,2':6',4''-tpy is synthetically straightforward, giving access to a large suite of building blocks. Less well explored is the coordination chemistry of 3,2':6',3''-tpy ligands which exhibit greater conformational flexibility than 4,2':6',4''-tpy. One approach to making the transition from 2D- to 3D-networks is to utilize tetratopic bis(4,2':6',4''-tpy) and bis(3,2':6',3''-tpy) ligands which act as 4-connecting nodes. In this highlight, we survey recent progress towards a better understanding of the design principles associated with the use of ditopic and tetratopic 4,2':6',4''-tpy and 3,2':6',3''-tpy containing ligands and their roles both as linkers and nodes in coordination assemblies.