Login / Signup

Loss of function of FIGNL1, a DNA damage response gene, causes human ovarian dysgenesis.

Natan FlorsheimLarisa NaugolniFouad ZahdehOrit LobelBatel TerespolskyRachel Michaelson-CohenMerav Y GoldMichal GoldbergPaul RenbaumEphrat Levy-LahadDavid Zangen
Published in: European journal of endocrinology (2023)
Ovarian dysgenesis (OD), an XX disorder of sex development, presents with primary amenorrhea, hypergonadotrophic hypogonadism, and infertility. In an Ashkenazi Jewish patient with OD, whole exome sequencing identified compound heterozygous frameshifts in FIGNL1, a DNA damage response (DDR) gene: c.189del and c.1519_1523del. Chromosomal breakage was significantly increased in patient cells, both spontaneously, and following mitomycin C exposure. Transfection of DYK-tagged FIGNL1 constructs in HEK293 cells showed no detectable protein in FIGNL1c.189del and truncation with reduced expression in FIGNL1c.1519_1523del (64% of wild-type [WT], P = .003). FIGNL1 forms nuclear foci increased by phleomycin treatment (20.6 ± 1.6 vs 14.8 ± 2.4, P = .02). However, mutant constructs showed reduced DYK-FIGNL1 foci formation in non-treated cells (0.8 ± 0.9 and 5.6 ± 1.5 vs 14.8 ± 2.4 in DYK-FIGNL1WT, P < .001) and no increase with phleomycin treatment. In conclusion, FIGNL1 loss of function is a newly characterized OD gene, highlighting the DDR pathway's role in ovarian development and maintenance and suggesting chromosomal breakage as an assessment tool in XX-DSD patients.
Keyphrases