A Systematic Review on Food Recommender Systems for Diabetic Patients.
Raciel YeraAhmad A AlzahraniLuis MartínezRosa M RodríguezPublished in: International journal of environmental research and public health (2023)
Recommender systems are currently a relevant tool for facilitating access for online users, to information items in search spaces overloaded with possible options. With this goal in mind, they have been used in diverse domains such as e-commerce, e-learning, e-tourism, e-health, etc. Specifically, in the case of the e-health scenario, the computer science community has been focused on building recommender systems tools for supporting personalized nutrition by delivering user-tailored foods and menu recommendations, incorporating the health-aware dimension to a larger or lesser extent. However, it has been also identified the lack of a comprehensive analysis of the recent advances specifically focused on food recommendations for the domain of diabetic patients. This topic is particularly relevant, considering that in 2021 it was estimated that 537 million adults were living with diabetes, being unhealthy diets a major risk factor that leads to such an issue. This paper is centered on presenting a survey of food recommender systems for diabetic patients, supported by the PRISMA 2020 framework, and focused on characterizing the strengths and weaknesses of the research developed in this direction. The paper also introduces future directions that can be followed in the next future, for guaranteeing progress in this necessary research area.
Keyphrases
- public health
- healthcare
- health information
- mental health
- human health
- type diabetes
- risk factors
- cardiovascular disease
- social media
- clinical practice
- current status
- randomized controlled trial
- risk assessment
- physical activity
- weight loss
- metabolic syndrome
- systematic review
- climate change
- glycemic control
- skeletal muscle
- adipose tissue
- insulin resistance