Login / Signup

Discovering New Metallo-Deubiquitinase CSN5 Inhibitors by a Non-Catalytic Activity Assay Platform.

Yu-Hang YanLiu-Liu WeiJing-Wei WuSi-Qi WeiYing-Ying JiangJun-Lin YuLing-Ling YangGuo-Bo Li
Published in: Journal of medicinal chemistry (2024)
COP9 signalosome catalytic subunit CSN5 plays a key role in tumorigenesis and tumor immunity, showing potential as an anticancer target. Currently, only a few CSN5 inhibitors have been reported, at least partially, due to the challenges in establishing assays for CSN5 deubiquitinase activity. Here, we present the establishment and validation of a simple and reliable non-catalytic activity assay platform for identifying CSN5 inhibitors utilizing a new fluorescent probe, CFP-1 , that exhibits enhanced fluorescence and fluorescence polarization features upon binding to CSN5. By using this platform, we identified 2-aminothiazole-4-carboxylic acids as new CSN5 inhibitors, which inhibited CSN5 but slightly downregulated PD-L1 in cancer cells. Furthermore, through the integration of deep learning-enabled virtual screening, we discovered that shikonins are nanomolar CSN5 inhibitors, which can upregulate PD-L1 in HCT116 cells. The binding modes of these structurally distinct inhibitors with CSN5 were explored by using microsecond-scale molecular dynamics simulations and tryptophan quenching assays.
Keyphrases