Login / Signup

SlCAND1, encoding cullin-associated Nedd8-dissociated protein 1, regulates plant height, flowering time, seed germination, and root architecture in tomato.

Wenjing ChengShuangqin YinYun TuHu MeiYongzhong WangYingwu Yang
Published in: Plant molecular biology (2020)
Silencing of SlCAND1 expression resulted in dwarfish, loss of apical dominance, early flowering, suppression of seed germination, and abnormal root architecture in tomato Cullin-RING E3 ligases (CRLs)-dependent ubiquitin proteasome system mediates degradation of numerous proteins that controls a wide range of developmental and physiological processes in eukaryotes. Cullin-associated Nedd8-dissociated protein 1 (CAND1) acts as an exchange factor allowing substrate recognition part exchange and plays a vital role in reactivating CRLs. The present study reports on the identification of SlCAND1, the only one CAND gene in tomato. SlCAND1 expression is ubiquitous and positively regulated by multiple plant hormones. Silencing of SlCAND1 expression using RNAi strategy resulted in a pleiotropic and gibberellin/auxin-associated phenotypes, including dwarf plant with reduced internode length, loss of apical dominance, early flowering, low seed germination percentage, delayed seed germination speed, short primary root, and increased lateral root proliferation and elongation. Moreover, application of exogenous GA3 or IAA could partly rescue some SlCAND1-silenced phenotypes, and the expression levels of gibberellin/auxin-related genes were altered in SlCAND1-RNAi lines. These facts revealed that SlCAND1 is required for gibberellin/auxin-associated regulatory network in tomato. Although SlCAND1 is crucial for multiple developmental processes during vegetative growth stage, SlCAND1-RNAi lines didn't exhibit visible effect on fruit development and ripening. Meanwhile, we discussed that multiple physiological functions of SlCAND1 in tomato are different to previous report of its ortholog in Arabidopsis. Our study adds a new perspective on the functional roles of CAND1 in plants, and strongly supports the hypothesis that CAND1 and its regulated ubiquitin proteasome system are pivotal for plant vegetative growth but possibly have different roles in diverse plant species.
Keyphrases